	BL – Blooms Level CO – Course Outcome								
	Use of IS: 456-2000 and SP – 16 design charts are permitted.								
			BL	СО	Max.				
					Marks				
UNIT-I									
1	a)	Construct a short note on working stress	L3	CO1	7 M				
		method and ultimate load method.							
	b)	A singly reinforced concrete beam is of	L2	CO1	7 M				
		width 400 mm and effective depth 615 mm.							
		It is reinforced with 8 Nos. 20 mm mild							
		steel bars. Assuming M-25 concrete, and							
		Fe-250 grade of steel. Predict its moment of							
		resistance according to the working stress							
		method.							
OR									
2	Ac	concrete beam has 300 mm breadth and 535	L2	CO1	14 M				
	mm	effective depth; effective cover 50 mm,							
	rein	forced with 3 nos. 20 mm diameter steel bars							
	at t	ension side. M20 concrete and Fe 415 grade							
	stee	el are used. Predict the moment of resistance.							

DESIGN OF REINFORCED CONCRETE STRUCTURES (CIVIL ENGINEERING)

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions. 2. All parts of Question must be answered in one place.

Code: 20CE3501

Duration: 3 hours

NOVEMBER 2024

III B.Tech - I Semester – Regular / Supplementary Examinations

Max. Marks: 70

		UNIT-II			
2			1.2	002	7 1 4
3	a)	Show the different 'limit states' to be	L3	CO2	7 M
		considered in reinforced concrete design.			
	b)	Demonstrate expression for depth of neutral	L3	CO2	7 M
		axis in limit state method.			
		OR			
4	Cal	culate the moment of resistance of the beam	L3	CO2	14 M
		ing dimension as 300 x 550 mm (effective).			
	The	e beam is reinforced with 1963mm ² of steel in			
	the	tension zone. Use M20 concrete and Fe415			
	stee	el.			
	1	UNIT-III	I	II	
5	a)	Discuss the types of shear reinforcements in	L2	CO3	7 M
		the beams with neat sketches.			
	b)	A simply supported R.C beam 230mm wide	L6	CO3	7 M
		and 450mm overall depth is reinforced with			
		four number of 16mm diameter bars. Design			
		the shear reinforcement, if the shear force at			
		service state is 180kN Use M20 grade			
		concrete and Fe415 grade steel.			
		OR			
6	Est	imate the equivalent shear and equivalent	L5	CO3	14 M
		ding moment in a rectangular beam section,			
	350 mm wide and 750 mm deep, subjected to an				
	ultimate twisting moment of 140 kNm combined				
	with an ultimate bending moment of 200 kN m				
	and an ultimate shear force of 110 kN. Assume				
	M25 grade concrete, Fe415 grade steel and mild				
	exp	osure conditions.			

UNIT-IV								
7	Analyze moment and shear of a reinforced	L4	CO4	14 M				
	concrete slab for a room of clear dimensions							
	4m x 5m. The slab is supported on walls of							
	width 300 mm. The slab is carrying live load of							
	4kN/m ² and floor finish 1kN/m ² . Use M20							
	concrete and Fe415 steel. The corners of slab are							
	held down.							
	OR							
8	Design a simply supported slab to cover a room	L6	CO4	14 M				
	with internal dimensions 4m x 6m and 230mm							
	thick brick walls all around. Assume live load of							
	3kN/m ² and a finish load of 1kN/m ² . Assume							
	that the slab corners are free to lift up. Use M20							
	grade concrete and Fe415 grade steel.							
		IC	COF	1475				
9	A corner column 400 mm x 400mm located in	L6	CO5	14 M				
	the lowermost storey of a system, is subjected to							
	factored loads: $P_u = 1300$ kN. The unsupported							
	length of the column is 3.5 m. Design the							
	reinforcement in the column, assuming M25							
concrete and Fe415 steel.								
10		L6	CO5	14 M				
	450 mm x 450 mm reinforced with 8-25 mm dia							
	bars carrying a service load of 2300 kN. Assume							
	soil with safe bearing capacity of 300 kN/m^2 at a							
	depth of 1.5 m below ground. Assume M25							
	grade concrete and Fe415 steel for both column							
1	and footing.							